26 research outputs found

    Accelerated partial separable model using dimension-reduced optimization technique for ultra-fast cardiac MRI

    Full text link
    Objective. Imaging dynamic object with high temporal resolution is challenging in magnetic resonance imaging (MRI). Partial separable (PS) model was proposed to improve the imaging quality by reducing the degrees of freedom of the inverse problem. However, PS model still suffers from long acquisition time and even longer reconstruction time. The main objective of this study is to accelerate the PS model, shorten the time required for acquisition and reconstruction, and maintain good image quality simultaneously. Approach. We proposed to fully exploit the dimension reduction property of the PS model, which means implementing the optimization algorithm in subspace. We optimized the data consistency term, and used a Tikhonov regularization term based on the Frobenius norm of temporal difference. The proposed dimension-reduced optimization technique was validated in free-running cardiac MRI. We have performed both retrospective experiments on public dataset and prospective experiments on in-vivo data. The proposed method was compared with four competing algorithms based on PS model, and two non-PS model methods. Main results. The proposed method has robust performance against shortened acquisition time or suboptimal hyper-parameter settings, and achieves superior image quality over all other competing algorithms. The proposed method is 20-fold faster than the widely accepted PS+Sparse method, enabling image reconstruction to be finished in just a few seconds. Significance. Accelerated PS model has the potential to save much time for clinical dynamic MRI examination, and is promising for real-time MRI applications.Comment: 23 pages, 11 figures. Accepted as manuscript on Physics in Medicine & Biolog

    Graphene/silicon heterojunction for reconfigurable phase-relevant activation function in coherent optical neural networks

    Full text link
    Optical neural networks (ONNs) herald a new era in information and communication technologies and have implemented various intelligent applications. In an ONN, the activation function (AF) is a crucial component determining the network performances and on-chip AF devices are still in development. Here, we first demonstrate on-chip reconfigurable AF devices with phase activation fulfilled by dual-functional graphene/silicon (Gra/Si) heterojunctions. With optical modulation and detection in one device, time delays are shorter, energy consumption is lower, reconfigurability is higher and the device footprint is smaller than other on-chip AF strategies. The experimental modulation voltage (power) of our Gra/Si heterojunction achieves as low as 1 V (0.5 mW), superior to many pure silicon counterparts. In the photodetection aspect, a high responsivity of over 200 mA/W is realized. Special nonlinear functions generated are fed into a complex-valued ONN to challenge handwritten letters and image recognition tasks, showing improved accuracy and potential of high-efficient, all-component-integration on-chip ONN. Our results offer new insights for on-chip ONN devices and pave the way to high-performance integrated optoelectronic computing circuits

    The complete chloroplast genome of japonica type weedy rice (Oryza sativa f. spontanea)

    No full text
    As a noxious weed, weedy rice (Oryza sativa f. spontanea Roshev. 1931) has threatened global food security and sustainable crop production. On the other hand, weedy rice has a strong tolerance for abiotic stresses and the potential to provide rich resources for rice genetic improvement. Thus, for a more comprehensive understanding of its speciation, we sequenced and assembled the first complete chloroplast genome of Oryza sativa f. spontanea (japonica type). The complete chloroplast genome was 134,555 bp in length and encoded 133 genes, including 83 protein-coding genes, 42 tRNA genes and 8 rRNA genes. Phylogenetic analysis revealed that the indica-japonica differentiation of weedy rice was closely related to cultivated rice, and Oryza sativa f. spontanea (japonica type) was genetically more closely clustered with cultivated rice O. sativa (japonica type) than O. nivara or other wild rice

    Transient analysis of solar pyrolysis and hydrogen yield via interband cascade laser absorption spectroscopy of methane, acetylene, ethylene, and ethane

    No full text
    A mid-infrared laser absorption sensing method has been developed to measure species concentrations of four hydrocarbons and gas temperature over a range of temperatures in mixture compositions relevant to the pyrolytic decomposition of natural gas. The four measured species (methane, acetylene, ethylene, and ethane) are the most abundant hydrocarbons during the pyrolysis of natural gas, and provide a means to monitor decomposition progress and hydrogen yield through molar balance. In this work, time-division multiplexed signals of three distributed-feedback interband cascade lasers are used to make simultaneous measurements of select C-H stretch rovibrational transitions of the target hydrocarbons in the 3.00-3.34 ÎĽm range. The sensor was validated over a range of temperatures and pressures (300-1000 K, 0.03-1 atm) at relevant mixture compositions, with correction methods developed to mitigate cross-species interference. The sensor was demonstrated on a solar-thermal pyrolysis reactor, where time-resolved measurements of species mole fractions were performed across a range of insolation conditions to capture the transient response of the reactor

    Spatio-Temporal Changes and Influencing Factors of Meteorological Dry-Wet in Northern China during 1960–2019

    No full text
    In northern China, precipitation fluctuates greatly and drought occurs frequently, which mark some of the important threats to agricultural and animal husbandry production. Understanding the meteorological dry-wet change and the evolution law of drought events in northern China has guiding significance for regional disaster prevention and mitigation. Based on the standardized precipitation index (SPI), this paper explored the spatio-temporal evolution of meteorological dry-wet in northern China. Our results showed that arid area (AA) and semi-arid area (SAA) in the west showed a trend of wetting at inter-annual and seasonal scales, while humid area (HA) and semi-humid area (SHA) in the east showed a different dry-wet changing trend at different seasons under the background of inter-annual drying. AA and HA showed obvious “reverse fluctuation” characteristics in summer. The drought frequency (DF) and drought intensity (DI) were high in the east and low in the west, and there was no significant difference in drought duration (DD) and drought severity (DS) between east and west. The DD, DS and DI of AA and SAA showed a decreasing trend, while the DD and DS of HA and SHA showed a slight increasing trend, and the DS decreased. In summer and autumn, the main influencing factors of drying in the east and wetting in the west were PNA, WP, PDO and TP1, and the fluctuations of NAO-SOI, NAO-AMO and PNA-NINO3.4 jointly determined the characteristics of SPI3 reverse fluctuations of HA and AA in summer

    Study on the Temporal and Spatial Evolution of China’s Carbon Dioxide Emissions and Its Emission Reduction Path

    No full text
    Based on the total carbon emission data of 30 provinces and cities in China from 2000 to 2020, this paper used non-parametric kernel density estimation and traditional and spatial Markov probability transfer matrix methods to explore the temporal and spatial dynamic evolution characteristics of carbon dioxide emissions in China and then used a super-SBM model to calculate the carbon emission reduction potential of each province. The results showed that: (1) from 2000 to 2020, the total carbon emissions in China showed an upward trend of fluctuation, from 1.35 Gt to 4.90 Gt year by year, with an annual growth rate of 13.10%. (2) The core density curve showed a double peak form of “main peak + right peak,” indicating that a polarization phenomenon occurred in the region. (3) The overall trend of carbon dioxide emissions shifting to superheavy carbon emissions was significant, and the probability of transition was as high as 74.69%, indicating that it was challenging to achieve leapfrog transition in the short term. (4) Based on the principle of fairness and efficiency of provincial carbon emission reduction, mainland China’s 30 provincial administrative regions can be divided into four types. Finally, the carbon emission reduction path is designed for each province

    Analyzing the Process of Land-Use Transfer Flow in the Suhai Lake Basin in China, 1980–2018

    No full text
    The Suhai Lake Basin has held major ecological status as a crucial component of the Qinghai-Tibet Plateau’s ecological security barrier. The Suhai Lake Migratory Bird Nature Reserve’s safety and the livelihood of Kazakh citizens are now directly endangered by the frequent switching between land-use types and the decrease of ecosystem service functions caused by climate change and human activity. As a result, this work introduces the idea of land-use transfer flow. Through the application of interval level change and the land-use transfer chain, the process, affecting factors, and current issues of land-use change in the Suhai Lake Basin over the past 40 years are thoroughly investigated. The results showed that the intensity of land-use change was significant, at 0.055%, during the period 1990–2000, whereas the grassland area significantly increased, with a net increase of 23.07 km2, mainly from the conversion of saline-alkali land, swamp, and other unused land in the middle and lower reaches. The key factor influencing the growth of the grassland throughout this time has been the ecological management policy. As a result of the climate’s ongoing warming between 2000 and 2018, glacial meltwater and precipitation increased, the middle and lower ranges of the groundwater table rose, and the grassland degradation, swamp shrinkage, and soil salinization in the watershed all worsened. The degradation of grassland will result from both overgrazing and overprotection. Suhai Lake Wetland and Haizi Grassland Wetland are the most readily apparent examples of land-use changes in the Suhai Lake Basin from a spatial perspective. More consideration should be given to the ecological deterioration and land exposure in the glacier retreat zone of the upstream source region. The results can provide important information on the impact of regional development and the environmental governance policies of the changes in land use/cover in the Suhai Lake Basin
    corecore